数学
为什么1+1可以等于1
我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......
为什么用一根绳子能算出大树的直径
圆周率π是由中国古代伟大的数学家祖冲之最先计算出来的,要比西洋人早了达1000多年。有了圆周率,我们都知道它是圆的周长和直径的比值,就能借助π来求出周长或者半径的值了。可是在我国古代,π还未诞生的时候,人们是如何测量大树、池塘的直径的呢? 实际上,在更早的时候,勤奋智能的劳动人民便已经了解“径一周三”的道理来了。上句......
为什么说0的意义不是没有
上学以后我们最先学习的是算术课,便认识了0这一数字,它可能是你所学过的最小的数字了。那么0是什么含义呢?若用手指数铅笔盒内铅笔的数目,1代表一支铅笔,则0便表示无铅笔,0的意思便是没有,若你学过减法,而10减10等于0,意思是说减没了,好象10个苹果让人吃掉了,最后一个不剩。看来0确实表示没有。 平常0是表示没有,可......
为什么九条路不能相交是错误的
在世界各个地方,都极为广泛流传着这样一道数学名题,虽然说法各不相同,但实际上却是同一个问题:一个地方有三个村庄及三所学校,从一个村庄到三所学校各自修一条路,能否使这九条路不相互交叉呢?许多人认为,只要你不怕艰难多绕绕弯子,这件事是很容易办到的。但事实并非如此,上面这些想法是不可能实现的,其中有着奇妙的数学原理。 在1......
为什么游泳圈也叫救生圈
只要游过泳的人便都有过使用游泳圈的记忆,若你套上五彩缤纷的游泳圈在水里游泳、嬉戏的时候,你是否想到过,游泳圈的浮力有多大呢,为何它能把一个人托在水面上呢?那么游泳圈的浮力是如何计算的呢?用数学知识我们应该知道,若把游泳圈充满气之后的体积,乘以水的密度,然后再减去游泳圈自身重量,得到的结果便是游泳圈所有的浮力。 水的密......
为什么有鸡兔同笼问题
鸡兔一笼问题是在我国古代算书《孙子算经》里的一个著名的数学问题。它的内容为: 在同一只笼子里,关着鸡与兔子。数一下,总有头35只,脚94只。请问:笼里有多少只鸡?多少只兔子? 利用现在列方程来解应用题的方法,求解这个问题十分容易。设里面鸡有x只,兔子有y只,那么由题意,有: x+y=35 ......
为什么算筹是人类最早的计算工具
算筹是我国古代的劳动人民最先靠实践创造和广泛流传使用的简单计算工具之一。 算筹是如何产生的呢?《后汉书》上曾经有关于算筹的记载:“隶首则乱,陈子筹昏。”“乱”和“昏”的古语含义是用来形容禽兽不计其数,这足以表明远古时代人们随着畜牧业生产的不断发展,人们发现用手指头和结绳已不能满足计算猎物的需要了,于是人们就开始从那时......
为什么没有最小公约数和最大公倍数
在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......
为什么球面不能展成平面图形
现在学过数学的人们都知道这样一个原理:圆柱、圆锥、圆台的侧面面积,我们可以利用各图形在平面内的展开图面来求出面积。但是球面是不能展成一个平面图形,因此球的表面积公式也就没办法用这个方法求出。但是为什么球面不能展成一个平面图形呢? 我们可以把圆柱、圆锥、圆台的一个侧面看成由一条直线(或线段)运动生成的图形,于是只有球面......
为什么照相机用三角架而不用四角架
你肯定见过照相机所专用的三角架,它伸出来三条长长的腿,稳稳地托住了上面的照相机,使拍出来的照片将不会因为拍摄者手的轻微移动而变模糊。除了照相机的三角架外,拍电影所用的摄像机也都有一个三脚架,往往脚上还有副轮子,以方便摄像机的移动。 在我们生活中有四只脚的东西也很多,像桌子、椅子和各种鞋架子、超市里的货物架等等,不是都......