数学

为什么说动物中也有数学家

你晓得吗?在自然界中,有很多奇妙的动物“数学家”。在黄金矩形(宽长之比为0.618的矩形)里靠着三边做成一个正方形,剩下的那部分则又是一个黄金矩形,可以依次再做成正方形。将这些正方形中心都按顺序联结,可得到一条“黄金螺线”。而海洋学家发现,在鹦鹉螺的身上,在一些动物角质体上,或有甲壳的软件动物身上,都曾发现有“黄金螺线”。 ......

继续阅读

为什么要“先乘除,后加减”

为了防止四则混合运算时相互发生混淆,使计算得到一个已经确定的结果。人们先后结合生活和实际生产的各个需要,在四则混合运算中明确规定:要“先乘除,后加减”。为什么科学家会如此规定呢?因为这样规定是有一定道理的。它的理由如下: 1.这样规定运算顺序,更加符合生活实际需要。请看下面例子。例1:王大妈到布店买了3米红布,每米红......

继续阅读

为什么在数学里要讲一一对应

我们讲求“一一对应”是数学上运用的最基本的关系。数字的来源相当早,有人类的出现,就有了数的使用。但是由于原始人类应用知识是极少的,且落后的,他们起初只知道“1”与“2”等数,后来,随着工具的大为改进,原始人捕获的猎物多得无法计清,他们为了计数,后来他们用结绳计数的方法来表示今天有多少猎物,这就是“一一对应”的雏形。 ......

继续阅读

为什么九条路不能相交是错误的

在世界各个地方,都极为广泛流传着这样一道数学名题,虽然说法各不相同,但实际上却是同一个问题:一个地方有三个村庄及三所学校,从一个村庄到三所学校各自修一条路,能否使这九条路不相互交叉呢?许多人认为,只要你不怕艰难多绕绕弯子,这件事是很容易办到的。但事实并非如此,上面这些想法是不可能实现的,其中有着奇妙的数学原理。 在1......

继续阅读

为什么能快速画出五角星

我们介绍三种用直尺与圆规很快画出五角星的近似方法。像这样,你以后在彩纸上再画五角星的时候,可以方便多了。 方法一:口诀“城外道儿弯,城门五面开”,首先在纸上用圆规画个圆,然后画出圆的两条相互垂直的直径AC与BD;之后分别用C、D作圆心,用直径BD的半径作弧,两弧交在E点。则OE便近似等于圆的内接正五边形之边长。自A点......

继续阅读

为什么π值是永不循环的

有一个关于圆周率的歌谣,盛行于古代:“山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐而乐。” 圆周率是圆的周长与直径之比,表示的是一个常数,符号是希腊字母 π。人们为了计算圆周率,公元前便开始对它进行计算。魏晋时期刘徽曾于公元263年用割圆术的方法求到3.14,这被称为“徽率”。 在公元460年,祖......

继续阅读

为什么采用公历年

去年是公元2000年,而2000年的二月共有29天。若你再翻翻前年的日历,便会发现1999年的二月只有28天,再看看1998年的日历,1998年的二月份同样是28天。我们便把二月份中只有28天的公历年叫平年,而把二月份有29天的公历年叫做闰年。2000年便是闰年。 为何要分平年与闰年呢? 天文学上将地球绕太......

继续阅读

为什么用一副三角板能画出24个角

每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......

继续阅读

为什么画圆圈能帮助你快速解题

你对圆圈并不陌生吧,可你知道用圆圈可以帮助我们迅速解题吗?我们先看下面这道例子:棋类比赛之前,班长便统计会下象棋与围棋的人数。统计会下象棋的人数时便有14个人举手,统计会下围棋的人数时便有11个人举手。再后来班长发现,会下象棋与围棋的人数总共有19人。按照原来的统计应该有14+11=25人,怎么会少了6个人呢?这是由于有的同学......

继续阅读

为什么没有最小公约数和最大公倍数

在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......

继续阅读