数学

为什么有哥德巴赫猜想

无论检验多大的数都可以发现,大于4的偶数一定可以写成两个奇素数之和,而大于7的奇数部可以写成三个奇数素数之和。 6=3+3,8=5+3 10=5+5,… 100=97+3,102=97+5… 9=3+3+3,11=5+3+3… 99=89+7+3,101=89+7+5,… ......

继续阅读

为什么1+1可以等于1

我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......

继续阅读

为什么会有七巧板

七巧板也叫“益智图”,依据近代数学史专家详细研究,七巧板发明的年代大约为明、清时期,它是我国劳动人民智能的结晶,在国外也十分重视。欧美人称它为“唐图”,其实这是一种误解,事实上“tangram”这个英文单词正确译法应是“蛋图”。从前我国东南沿海的水上居民被称做蛋家,因而在明清两朝,备受封建统治者的压迫以及歧视,七巧板就是他们的......

继续阅读

为什么照相机用三角架而不用四角架

你肯定见过照相机所专用的三角架,它伸出来三条长长的腿,稳稳地托住了上面的照相机,使拍出来的照片将不会因为拍摄者手的轻微移动而变模糊。除了照相机的三角架外,拍电影所用的摄像机也都有一个三脚架,往往脚上还有副轮子,以方便摄像机的移动。 在我们生活中有四只脚的东西也很多,像桌子、椅子和各种鞋架子、超市里的货物架等等,不是都......

继续阅读

为什么偶数与整数同样多

当看到这则题目,你可能会不假思索地说:当然是整数比偶数多,部分怎么会比全体多呢!偶数是指能被2所整除的整数,它仅是整数集合中的一部分,另外除了偶数之外,整数还包括奇数。照这样看上去,偶数的确应该没有整数多。 但这个问题在实质上问的是偶数集合与整数集合之间的大小关系。集合在数学上所指的是一类事物的总称,若把所有的整数放......

继续阅读

为什么画圆圈能帮助你快速解题

你对圆圈并不陌生吧,可你知道用圆圈可以帮助我们迅速解题吗?我们先看下面这道例子:棋类比赛之前,班长便统计会下象棋与围棋的人数。统计会下象棋的人数时便有14个人举手,统计会下围棋的人数时便有11个人举手。再后来班长发现,会下象棋与围棋的人数总共有19人。按照原来的统计应该有14+11=25人,怎么会少了6个人呢?这是由于有的同学......

继续阅读

为什么“和尚吃馒头问题”有别的解法

我国历史上著名的珠算大师、明朝数学家程大位曾写了一本影响十分大的书《算法统宗》。这本书后来一直被流传到日本、朝鲜、以及东南亚一带。在书中能看到他精心编写的大量歌谣体古算题,“和尚吃馒头问题”便是其中之一。这道题原文是:一百馒头一百僧,大僧三个便无争,小僧三人分一个,大小和尚各几个? 这是极其浅显易懂的七言诗,能像“唱......

继续阅读

为什么说动物中也有数学家

你晓得吗?在自然界中,有很多奇妙的动物“数学家”。在黄金矩形(宽长之比为0.618的矩形)里靠着三边做成一个正方形,剩下的那部分则又是一个黄金矩形,可以依次再做成正方形。将这些正方形中心都按顺序联结,可得到一条“黄金螺线”。而海洋学家发现,在鹦鹉螺的身上,在一些动物角质体上,或有甲壳的软件动物身上,都曾发现有“黄金螺线”。 ......

继续阅读

为什么有鸡兔同笼问题

鸡兔一笼问题是在我国古代算书《孙子算经》里的一个著名的数学问题。它的内容为: 在同一只笼子里,关着鸡与兔子。数一下,总有头35只,脚94只。请问:笼里有多少只鸡?多少只兔子? 利用现在列方程来解应用题的方法,求解这个问题十分容易。设里面鸡有x只,兔子有y只,那么由题意,有: x+y=35 ......

继续阅读

为什么卡拉OK比赛算分时要去掉最高分和最低分

在卡拉OK比赛中,评委们所亮出的分数,按评分规则都是要去掉一个最高分与一个最低分,之后取到的分数的平均值来作为参赛者的最后得分。不知道你想过没有,为何要去掉最高分与最低分呢? 例如一个同学唱完之后,六个评委中的评分是9.00、9.50、9.55、9.60、9.75、9.90(10分为满分)。再去掉最高分9.90与最低......

继续阅读