数学
为什么偶数与整数同样多
当看到这则题目,你可能会不假思索地说:当然是整数比偶数多,部分怎么会比全体多呢!偶数是指能被2所整除的整数,它仅是整数集合中的一部分,另外除了偶数之外,整数还包括奇数。照这样看上去,偶数的确应该没有整数多。 但这个问题在实质上问的是偶数集合与整数集合之间的大小关系。集合在数学上所指的是一类事物的总称,若把所有的整数放......
为什么没有最小公约数和最大公倍数
在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......
为什么有现在的电子算盘
人们在远古时候,就用石子来计数。后来,生产力发展,又改用像筷子一样的小棒进行计数,叫做“筹算”。经过长时间的使用,大家都觉得用算筹摆来摆去进行计算确实不方便,于是把算筹改为用“珠盘”进行计算,就是把珠子放入盘内表示要相加的数,然后取出盘子里的珠子表示要减去的数字。用珠盘计数,珠子特别容易滚动,后来我国人民发明了珠算。我们使用算......
为什么蜂窝都是六角形的
若你仔细地观察过蜜蜂的蜂房,你便会由衷地发出惊叹来,它的结构可真是大自然中的奇迹啊。 自正面看上去,蜂房的蜂窝全是由很多大小一样的六角形组成的,并且排列得十分整齐;自侧面看,蜂房由很多六棱柱紧密地排列在一起而构成的;若你再认真地观察这些六棱柱的底面,你会更加惊讶,它们已不再是六角形的,它不是平的,也不是圆的,却是尖的......
为什么有数学黑洞“西西费斯串”
传说在古希腊神话中,科林斯国王西西费斯被罚将一块巨石一直推到一座山上,但是不管他如何努力,这块巨石总是在到达山顶之前就滚下来,于是他只好再推,并且永无休止。世界著名的西西费斯串就是依据这个故事一举得名的。 什么叫西西费斯串呢?它是随便一个数,如35962,数出这个数中的偶数个数以及奇数个数、及全部数字的个数,就能得到......
为什么用一副三角板能画出24个角
每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......
为什么不渡河能知河面的宽度
不过河却要测量一条河的宽度,对一个懂得几何学的人来讲,与不爬到树梢上去却测量树的高度同样简单,我们能使用与测量不可以接近的高度的一样方法来测量不可以接近的距离。这二种测量方法都是用别的一个利于直接量出来的距离来代替我们所要测量出的距离。下面来介绍一种十分简单的用“三针仪”测量河面宽度的方法。 什么称“三针仪”呢?便是......
为什么有哥德巴赫猜想
无论检验多大的数都可以发现,大于4的偶数一定可以写成两个奇素数之和,而大于7的奇数部可以写成三个奇数素数之和。 6=3+3,8=5+3 10=5+5,… 100=97+3,102=97+5… 9=3+3+3,11=5+3+3… 99=89+7+3,101=89+7+5,… ......
为什么1+1可以等于1
我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......
为什么说动物中也有数学家
你晓得吗?在自然界中,有很多奇妙的动物“数学家”。在黄金矩形(宽长之比为0.618的矩形)里靠着三边做成一个正方形,剩下的那部分则又是一个黄金矩形,可以依次再做成正方形。将这些正方形中心都按顺序联结,可得到一条“黄金螺线”。而海洋学家发现,在鹦鹉螺的身上,在一些动物角质体上,或有甲壳的软件动物身上,都曾发现有“黄金螺线”。 ......