数学
为什么三角形内角之和总等于180度
平面几何告诉我们,“三角形的内角之和等于180度”。因为这是一条已经证明了的定理,所以对于“三角形内角之和会不会不等于180度”这样一个“怪”问题,很少会有人去设想了。 其实,它真的是个问题。早在100多年前,或是更早的时候,已有人开始设想,不但设想研究了这个问题,并且还得出证明了如下两个完全相反的结论: ......
为什么蜂窝都是六角形的
若你仔细地观察过蜜蜂的蜂房,你便会由衷地发出惊叹来,它的结构可真是大自然中的奇迹啊。 自正面看上去,蜂房的蜂窝全是由很多大小一样的六角形组成的,并且排列得十分整齐;自侧面看,蜂房由很多六棱柱紧密地排列在一起而构成的;若你再认真地观察这些六棱柱的底面,你会更加惊讶,它们已不再是六角形的,它不是平的,也不是圆的,却是尖的......
为什么有时我们只求近似值
假如有人问你:“今年几岁了?”你会回答:“我15岁了。”这个回答是正确的,但15只是你年龄的近似值,它并不十分精确。如果你的朋友也是15岁,要比较你们两个年龄的大小,就必须知道你们生在哪一月,也就是,你必须说出自己的年龄是14岁零几个月才好比较。但它依然是个近似值。如果你们两人同时生在10月份,那么,必须更准确地知道你们的生日......
为什么铁拉闸一推就会收拢
居住在城市里的小朋友,在上学或者回家时,假如沿马路留心观察一下,你一定可以发现,有些商店或建筑物的铁拉闸,尽管很重,但是开关起来却十分轻便。 为什么一扇巨大的铁拉闸,只要一推,它就被合拢了,但是拉伸开来,却又是那样地牢固呢? 假如你仔细地观察这些铁拉闸的个别构造,那就可以找到正确的回答。因为它们是由一个个的......
为什么说数从劳动中来
你晓得我们目前数的数1、2、3…是自哪儿来的吗?数是在什么时候出现的?因为它产生的年代太长远了,根本没法考证了。可是有一点能够肯定,数的概念与计数的方法是在有文字记载以前便已经很快发展起来了。考古学家已证明,人类自从5万年前便采用了某些计数方法来计数了。原始时候的人类,天天必须出去打猎与采集野果子等食物来维持生存。有的时候他们......
为什么会有七巧板
七巧板也叫“益智图”,依据近代数学史专家详细研究,七巧板发明的年代大约为明、清时期,它是我国劳动人民智能的结晶,在国外也十分重视。欧美人称它为“唐图”,其实这是一种误解,事实上“tangram”这个英文单词正确译法应是“蛋图”。从前我国东南沿海的水上居民被称做蛋家,因而在明清两朝,备受封建统治者的压迫以及歧视,七巧板就是他们的......
为什么用一根绳子能算出大树的直径
圆周率π是由中国古代伟大的数学家祖冲之最先计算出来的,要比西洋人早了达1000多年。有了圆周率,我们都知道它是圆的周长和直径的比值,就能借助π来求出周长或者半径的值了。可是在我国古代,π还未诞生的时候,人们是如何测量大树、池塘的直径的呢? 实际上,在更早的时候,勤奋智能的劳动人民便已经了解“径一周三”的道理来了。上句......
为什么一个人能解决狼、羊、白菜过河的问题
题目是这样的:有位带着一只狼、一只羊、一棵白菜来到河边(我们假使狼是不吃人)的人。河边刚好有一条空着的小船,过河时,船很小仅能允许主人带一样东西,若带两样东西上船,船便会沉下去。另一方面,若没人照管,狼会吃掉羊,羊又将啃白菜,因此,狼和羊,羊和白菜在主人不在的情况下,是不可以放在一块的。问主人应该采取什么样的过河方案,才可以把......
为什么1+1可以等于1
我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......
为什么没有最小公约数和最大公倍数
在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......